Prospective spatiotemporal detection of COVID-19 clusters in Cuba

Authors

Keywords:

COVID-19, spatiotemporal grouping, relative risk, surveillance.

Abstract

Introduction: During the occurrence of ongoing emerging infectious diseases such as COVID-19, spatiotemporal surveillance is crucial to identify priority areas for specific interventions, differentiate diagnostic intensity and assign resources.

Objective: To model the evolution of the relative risk of presentation of COVID-19 cases and to identify clusters in municipalities where the disease remains at the stage following the descent of the epidemic curve in Cuba.

Methods: The period mentioned was from 26/05/2020 to 4/09/2020. Cyclic runs of Poisson's prospective spatiotemporal model were performed, with progressive 14-day increases, using the software SaTScan™ 9.6.

Results: A total 15 significant clusters were identified (p ≤ 0.0001) extending over one to thirteen municipalities and distributed in six provinces (Pinar del Río, Artemisa, Havana, Mayabeque, Matanzas, Villa Clara and Ciego de Ávila). In the clusters, all municipalities showed a high relative risk among them, La Palma in Pinar del Rio province and Ciego de Avila in the province of the same name, with the highest values, 119.95 and 121.04, respectively.

Conclusion: The model was able to identify territories with a significant likelihood of COVID-19 occurrence, as well as periods in the evolution of relative risk. It also showed that surveillance and early warning strategies may facilitate prioritization of health control and containment interventions aimed at preventing the reemergence of the disease with greater spatial coverage.

Downloads

Download data is not yet available.

Author Biographies

Damarys de las Nieves Montano Valle, Centro Nacional de Sanidad Agropecuaria

Departamento Epidemiología-Clínica. Máster en Medicina Veterinaria Preventiva, Aspirante a investigador.

Yandy Abreu Jorge, Centro Nacional de Sanidad Agropecuaria

Departamento Epidemiología-Clínica. Ingeniero informático e Investigador agregado.

Angel Miguel Germán Almeida, Instituto de Medicina Tropical Pedro Kouri (IPK)

Licenciado en geografia.

Luisa Basilia Iñiguez Rojas, Facultad Latinoamericana de Ciencias Sociales (FLACSO), Universidad de La Habana.

Jefe de grupo de investigación en salud y bienestar humano. Lic y Dr. C

Maria Irian Percedo Abreu, Centro Nacional de Sanidad Agropecuaria

Departamento Epidemiología-Clínica. Dr. MV, Dr.C  e Investigadora titular

Susana Marta Borroto Gutiérrez, Organización Panamericana de la Salud (OPS).

Organización Panamericana de la Salud (OPS). Consultor en Enfermedades Transmisibles. Dr. M, Ms.C

Pastor Alfonso Zamora, Centro Nacional de Sanidad Agropecuaria

Jefe de Grupo de Epidemiología-Clínica. Dr. MV, Dr. C e Investigador titular

References

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. 2019. New England Journal of Medicine. 2020 Jan 24.

Ghebreyesus T.A. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. World Heal Organ Speeches. 2020. Available: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 28 november 2020.

World Health Organization (WHO). Coronavirus Disease (COVID-19) Dashboard. 2021. Data last updated: 2021/1/21, Disponible en https://www.who.int/publications/m/item/weekly-epidemiological-update---19-january-2021

Qiu J. Covert coronavirus infections could be seeding new outbreaks. Nature. 2020. Available: https://www.nature.com/articles/d41586-020-00822-x. Accessed 27 august 2020.

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020. 368(6490), 489-493.

Bonaccorsi G, Pierri F, Cinelli M, Flori A, Galeazzi A, Porcelli F, Pammolli F. Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences. 2020. 117(27), 15530-15535.

Borroto S. Vigilancia epidemiológica frente a la COVID-19 en Cuba. Boletín de la OPS/OMS en Cuba. 2020. Vol. 24 No.2 MAYO-JUNIO 2020, pag 10-14. Disponible en: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiZ9fS8oebrAhWspFkKHaCLDPcQFjAAegQIBhAB&url=https%3A%2F%2Firis.paho.org%2Fbitstream%2Fhandle%2F10665.2%2F52514%2Fv24n2.pdf.pdf%3Fsequence%3D1%26isAllowed%3Dy&usg=AOvVaw2Vqulyi4k7G8tnoYYO1H5e

Consejo de Ministros. Nota informativa sobre el inicio de la primera etapa y fase 1 de la recuperación pos-COVID-19. 16 de junio de 2020. Disponible en: https://www.presidencia.gob.cu/es/noticias/nota-informativa-sobre-el-inicio-de-la-primera-etapa-y-fase-1-de-la-recuperacion-pos-covid-19/

COVID19 CUBADATA. Datos en tiempo real de la evolución de la epidemia de COVID-19 en Cuba. 2020. Disponible en http://covid19cubadata.github.io/#cuba

Desjardins MR, Hohl A, Delmelle EM. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: Detecting and evaluating emerging cluster. Applied Geography. 2020. 118, May 2020, 102202. https://doi.org/10.1016/j.apgeog.2020.102202.

Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A. 2020. 164(1), 61–72. https://doi.org/10.1111/1467-985X.00186

Mulatti P, Mazzucato M, Montarsi F, Ciocchetta S, Capelli G, Bonfan Marangon S. Retrospective space–time analysis methods to support west nile virus surveillance activities. Epidemiol. Infect. 2015. 143 (1), 202–213.

Whiteman A, Desjardins M, Eskildsen G, Loaiza J. Detecting space-time clusters of dengue fever in panama after adjusting for vector surveillance data. PLoS Negl Trop Dis. 2018. 13 (9), e0 0 07266. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776363/

Alkhamis, Moh A, Youha, Sarah Al, Khajah, Mohammad M, et al. Spatiotemporal dynamics of the COVID-19 pandemic in the State of Kuwait. International Journal of Infectious Diseases. 2020. 98,153–160

Andrade LA, Gomes DS, de Oliveira MA, Feitosa de Souza MS, Pizzi DC, Nunes CJ, et al. Surveillance of COVID-19 in Sergipe. Journal of the Brazilian Society of Tropical Medicine. 2020. 53, e20200287. doi: 10.1590/0037-8682-0287-2020

Amin R, Hall T, Church J, Schlierf D, Kulldorff M. Geographical surveil- lance of covid-19: diagnosed cases and death in the United States. medRxiv. 2020.

Durán N y Botello E. Detección de conglomerados «activos» emergentes de altas tasas de incidencia, para la vigilancia rápida de la COVID-19. Medicent ElectrónE‐ISSN: 1029 3043 | RNPS 1820. jul.-sep. 2020. 24(3)

Jones RC, Liberatore M, Fernandez JR, Gerber SI. Use of a Prospective Space-Time Scan Statistic to Prioritize Shigellosis Case Investigations in an Urban Jurisdiction. Public Health Reports. March–April 2006. 121

Hohl A, Delmelle E, Desjardins M, Lan Y. Spatial and Spatio-temporal Epidemiology 34. 2020. 100354. https://doi.org/10.1016/j.sste.2020.100354

Greene SK, Peterson ER, Kapell D, Fine AD, Kulldorff M. Daily re-portable disease spatiotemporal cluster detection, New York City, USA 2014–2015. Emerging Infect. Dis. 2016. 22 (10), 1808.

Kulldorff M, Athas WF, Feurer EJ, Miller BA and Key CR. Evaluating cluster alarms: A space-time scan statistic and brain cancer in Los alamos, New Mexico. American journal of public health. 1998. 88(9), 1377–1380.

Kulldorff, M. SaTScanTM user guide for version 9.6. 2018. https://www.satscan.org/.

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine. 2020. 172(9), 577-582.

Hohl A, Delmelle E, Desjardins M. Rapid detection of covid-19 clusters in the United States using a prospective space-time scan statistic: an update. SIGSPATIAL Special. 2020. 12 (1), 2733. doi: 10.1145/3404111.3404116.

Kraemer MU, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, Brownstein JS. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020. 368(6490), 493-497.

Kwok KO, Lai F, Wei WI, Wong SYS, Tang JW. Herd immunity estimating the level required to halt the COVID-19 epidemics in affected countries. Journal of Infection. 2020. 80(6), e32-e33.

Fontanet A y Cauchemez S. COVID-19 herd immunity: where are we? Nature Reviews Immunology. 2020. 1-2.

Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020. 382:970–1. doi: 10.1056/NEJMc2001468 58.

Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020. 382:872–4. doi: 10.1056/NEJMc2001272

Swelum AA, Shafi ME, Albaqami NM, El-Saadony MT, Elsify A, Abdo M, et al. COVID-19 in Human, Animal, and Environment: A Review. Front. Vet. Sci. 2020. 7:578. doi: 10.3389/fvets.2020.00578

Ballesteros P, Salazar E, Sánchez D, Bolaños C. Aglomeración espacial y espaciotemporal de la pandemia por COVID-19 en Ecuador. Rev. Fac. Med. 2021. 2020. 69(1). doi: http://dx.doi.org/10.15446/revfacmed.v69n1.86476.

Ferreira RV, Martines MR, Toppa RH, Assunção LM, Desjardins MR, Delmelle EM. Applying a Prospective Space-Time Scan Statistic to Examine the Evolution of COVID-19 Clusters in the State of São Paulo, Brazil. 2020. .https://doi.org/10.1101/2020.06.04.20122770

Published

2021-02-27

How to Cite

1.
Montano Valle D de las N, Abreu Jorge Y, Germán Almeida AM, Iñiguez Rojas LB, Percedo Abreu MI, Borroto Gutiérrez SM, et al. Prospective spatiotemporal detection of COVID-19 clusters in Cuba. Rev. cuba. hig. epidemiol. [Internet]. 2021 Feb. 27 [cited 2025 Jan. 10];58. Available from: https://revepidemiologia.sld.cu/index.php/hie/article/view/1055

Issue

Section

ARTÍCULOS ORIGINALES