Vacunas de la infancia podrían estar contribuyendo a menor incidencia y severidad de COVID-19 en edades pediátricas

Luis Fonte Galindo, María Ginori Gilkes, Gissel García Menéndez

Texto completo:

PDF

Resumen

A más de un año de que la pandemia de COVID-19 emergiera en la ciudad China de Wuhan, un hecho sigue llamando la atención de la comunidad científica enfrentada a esta virosis: la menor susceptibilidad de los niños a la infección por SARS CoV-2 y al desarrollo de cuadros severos de COVID-19. Un grupo de factores, no excluyentes, ha sido aludido para explicar la mayor resistencia de los menores a la virosis y a sus consecuencias clínicas. El objetivo de este trabajo es incursionar en un factor adicional, todavía poco abordado en la literatura médica relacionada con el tema: la resistencia inespecífica a SARS-CoV-2 que podría estar siendo generada por las vacunas administradas durante la infancia. Con esta incursión se pretende, además, aportar a una mejor comprensión del carácter relativamente benévolo de la virosis en los menores. El análisis realizado permite concluir que un grupo de las vacunas administradas durante esa etapa, la mayoría de las cuales forman parte del esquema de inmunización de los niños cubanos, se asocia a una menor incidencia y severidad de la infección por SARS CoV-2 en edades pediátricas.

 

Palabras clave

COVID-19; SARS CoV-2; vacunación; niños; susceptibilidad a enfermedades.

Referencias

- Yang J, Zheng, Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94:91-5. https://doi.org/10.1016/j.ijid.2020.03.017.

- WHO. Coronavirus press conference 11 February, 2020. World Health Organization, Geneva. https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMIkanE_YLh7gIVo-iGCh2rvABuEAAYASAAEgLF5fD_BwE

- WHO. Coronavirus disease 2019 (COVID-19): Weekly epidemiological update - 9 February 2021. World Health Organization, Geneva. https://www.who.int/publications/m/item/weekly-epidemiological-update---9-february-2021

- Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92:568-76. https://www.onlinelibrary.wiley.com/doi/full/10.1002/jmv.25748.

- Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20: 269-70. https://doi: 10.1038/s41577-020-0308-3.

- Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect 2020. https://doi.org/10.1016/j.jmii.2020.02.011.

- Carsetti R, Quintarelli C, Quinti I, Mortari E, Zumla A, Ippolito G, et al. The immune system of children: the key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc Health 2020. https://doi.org/10.1016/S2352-4642(20)30135-8.

- Beric-Stojsic B, Kalabalik-Hoganson J,Rizzolo D, Roy S. Childhood Narrative Review. Front Public Health 2020; 8:587007. https://doi: 10.3389/fpubh.2020.587007.

- Coronavirus en Cuba: Información oficial del Ministerio de Salud Pública. 11 Febrero, 2021. MINSAP, La Habana, Cuba. https://salud.msp.gob.cu/parte-de-cierre-del-dia-10-de-febrero-a-las-12-de-la-noche/

- Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child 2020. https://doi:10.1136/archdischild-2020-320338

- Ignjatovic V, Mertyn E, Monagle P. The coagulation system in children: developmental and pathophysiological considerations. Semin Thromb Hemost 2011; 37:723-9. https://doi: 10.1055/s-0031-1297162.

- Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M, et al. Airways expression of SARS CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Methods Clin Dev 2020; 18:1-6. https://doi.org/10.1016/j.omtm.2020.05.013.

- Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus‐associated illnesses. J Med Virol 2020; 92:512-7. https://doi: 10.1002/jmv.25715.

- Fulop T, Larbi A, Dupuis G, Page AL, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Frontiers Immunol 8:1960. https://doi: 10.3389/fimmu.2017.01960.

- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395:1054-62. https://doi: 10.1016/S0140-6736(20)30566-3.

- Martín Giménez VM, Inserra F, Tajer CD, Mariani J, Ferder L, Reiter RJ, et al. Lungs as target of COVID-19 infection: protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci 2020; 254:117808. https://doi: 10.1016/j.lfs.2020.117808.

- Posfay-Barbe KM, Wagner N, Gauthey M, Moussaoui D, Loevy N, Diana A, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics 2020; 146:e20201576. https://doi: 10.1542/peds.2020-1576.

- Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-88. https://doi: 10.1038/s41577-020-0285-6.

- Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev 2018; 31:e00111-7. https://doi: 10.1128/CMR.00111-17.

- Fonte L, Acosta A, Sarmiento ME, Ginori M, García G, Norazmi MN. COVID 19 lethality in Sub-Saharan Africa and helminth immune modulation. Front Immunol 2020; 11: https://doi:10.3389/fimmu.2020.574910.

- Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS CoV-2. Gastroenterology 2020; 158:1831-3. https://doi:10.1053/j.gastro.2020.02.055.

- Mayr, A. Taking advantage of the positive side-effects of smallpox vaccination. J Vet Med B Infect Dis Vet Public Health 2004; 51:199-201. https://doi: 10.1111/j.1439-0450.2004.00763.x

- Aaby P, Samb B, Simondon F, Seck AM, Knudsen K, Whittle H. Non-specific beneficial effect of measles immunization: analysis of mortality studies from developing countries. BMJ 1995; 311:481-5. https://doi:10.1136/bmj.311.7003.481.

- Benn C, Netea M, Selin L, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol 2013; 34:431-9. https://doi: 10.1016/j.it.2013.04.004.

- Hon KLE, Leung CW, Cheng WTF, Chan PK, Chu WC, Kwan YW, et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet 2003; 361:1701-3. https://doi: 10.1016/s0140-6736(03)13364-8.

- Al-Tawfiq JA, Kattan RF, Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia. WJCP 2016; 5:391-6. https://doi: 10.5409/wjcp.v5.i4.391.

- O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol 2020. https://doi.org/10.1038/s41577-020-0337-y.

- Miller A. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv 2020. https://doi.org/10.1101/2020.03.24.20042937.

- Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 2018; 23:89-100. https://doi: 10.1016/j.chom.2017.12.010.

- Nuovoa G, Tilib E, Susterc D, Matysa E, Huppa L, Magrod C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol 2020; 48:151600. https://doi.org/10.1016/j.anndiagpath.2020.151600.

- Guiso N, Meade BD. Wirsing von König CH. Pertussis vaccines: The first hundred years. Vaccine 2020; 38:1271-6. https://doi: 10.1016/j.vaccine.2019.1211.1022.

- Reche PA. Potential cross-reactive immunity to SARS-CoV-2 from common human pathogens and vaccines. Front Immunol 2020; 11:586984. https://doi: 10.3389/fimmu.2020.586984.

- Saad M, Elsalamony R. Measles vaccines may provide partial protection against COVID-19. Int J Cancer Biomed Res. 2020; 5:14-19. https://doi: 10.21608/jcbr.2020.26765.1024.

- Zimmermann P, Perrett KP, van der Klis FR, Curtis N. The immunomodulatory effects of measles-mumps-rubella vaccination on persistence of heterologous vaccine responses. Immunol Cell Biol 2019; 97:577-85. https://doi.org/10.1111/imcb.12246.

- Wu D, Guo CY. Epidemiology and prevention of hepatitis A in travelers. J Travel Med 2013; 20:394-399. https://doi: 10.1111/jtm.12058.

- Sarialioglu F, Apak FBB, Haberal M. Can hepatitis A vaccine provide protection against COVID-19? Exp Clin Transpl 2020; 2:141-3. https://doi: 10.6002/ect.2020.0109.

- López L, Egües L, Pérez A, Galindo B, Galindo MA, Resik S, et al. Experiencia cubana en inmunización, 1962-2016. Rev Panam Salud Publica. 2018; 42:e34. https://doi.org/10.26633/RPSP.2018.34.

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Luis Fonte Galindo

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.